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Abstract

A particularly exciting topic of recent research is advanced distributed signal and data fusion for passive
radar systems, where radio, TV, or mobile phone base stations are used as sources for illuminating targets
of interest. Even in remote regions of the world, each transmitter of electromagnetic radiation becomes a
potential radar transmitter station, which enables air surveillance by passively receiving reflections of non-
cooperatively emitted signals of opportunity. In this way, the reconnaissance process remains covert and is
not revealed by actively transmitting radiation. Analogous considerations are valid for sub-sea surveillance.

Digital Audio/Video Broadcasting (DAB/DVB-T) is already available in a large area of Europe. The
advantage of using these signals for passive air surveillance is the disposability of a large range of illumi-
nators sending an easily decodeable digital broadcast signal. In the considered multi-static scenario, one
observer provides bistatic Time Difference of Arrival (TDoA) and Doppler measurements. The main task for
target tracking is to handle ghosts that arise due to problems of association between illuminators, targets
and measurements. In this paper, an approach for track initialization in a single frequency network (SFN)
is discussed, which is based on clustering. Special attention will be paid to the 2D estimation performance,
related to fusing TDoA measurements of two distinct illuminators. Numerical results will include perfor-
mance analysis via Monte-Carlo simulations for 2D Cartesian estimation performance and an analysis of
the number of reasonable estimates in a real configuration of DAB illuminators.

Detection of moving targets in stationary clutter can be accomplished by STAP radar. In contrast to
monostatic radar the performance of bistatic STAP depends strongly on the actual radar-target geometry.
Even for sidelooking radar the clutter Doppler is generally range dependent which causes special problems
in estimating the space-time clutter covariance matrix. For certain bistatic constellations clutter notches
as appearing during track (i.e. areas of low probability of detection) may be considerably wider than in
monostatic radar. The bistatic transmitter-receiver constellation has strong implications on ground moving
target tracking, which is basic for producing a recognized ground picture as well as for analyzing traffic
flows, identifying sources and sinks of traffic, or detecting lines of communication. Aspects of a bistatic
GMTI tracking algorithm are described and some typical tracking results are given. Special emphasis is
placed on a suitable modeling of the bistatic radar characteristics within the tracker.
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1 Introduction

By exploiting illumination by stationary or mobile transmitters of radiation, which are spatially separated
from receiver stations operating cooperatively or non-cooperatively, even those objects can be passively lo-
cated and tracked that are not actively transmitting radiation themselves. In this case of bistatic illumination,
the reconnaissance process remains covert. In practically relevant bistatic scenarios, illuminators of opportu-
nity like radio or television [1, 2] are of particular importance. Since the illuminators are dislocated from the
receiver, instead of measuring the round trip time (RTT), we measure the Time Difference of Arrival (TDoA)
between the signal received directly from the sender and delayed copies reflected of potential targets. In our
application, also Doppler shift, i.e. range-rate, is measured, which gives us information about the velocity.

Using signals emitted by radio and television antennas provide interesting opportunities for passive air
surveillance. We consider a network of television or radio antennas, broadcasting digital signals (DAB/DVB-
T)[3] at the same frequency, a so-called single frequency networks (SFN). So, even if we consider only a
single receiver, we usually obtain multiple copies, depending on the number of illuminators within range.
Advantages in comparison to active systems are:

1. a saving of costs, since no additional illuminators are needed; and

2. the possibility of covert air surveillance.

Besides all these perspectives, using non-cooperative illuminators for air surveillance still holds challenges
in the fields of signal processing [4] and target tracking.

In this contribution, we point out difficulties concerning target tracking and present an approach that
is adapted to the special requirements of DAB and DVB-T networks. The main difficulty with respect to
target tracking is that the association between illuminators and measurement is principally unknown. This
leads to challenging association problems. We base our tracking algorithm on Multi Hypothesis Tracking
(MHT)[5]. To decrease computational complexity we divide it into several tracking stages: The first tracking
stage works directly on the incoming measurements in bistatic range and range-rate. In the second stage we
generate possible 2D estimates by combining information of two illuminators and solve the association
problem (Deghosting). Finding a probable 2D Cartesian target estimate is based on clustering and depends
on an appropriate description of the probability density [6]. Last, the third stage delivers a 3D Cartesian
state estimate. We will give numerical results for the different tracking stages via Monte Carlo Runs and
discuss the dependencies between them. Estimation performance will be analyzed in terms of the averaged
estimation error and includes a comparison to the corresponding average trace of the covariance matrix.

Another aspect to be discussed, continues a series of papers on tracking of ground targets with STAP
radar [22]-[24]. In [22] the CRB of azimuth and Doppler estimates produced by a monostatic airborne STAP
radar is used to improve tracking of moving ground targets. STAP is required to detect moving targets in
ground clutter. In [2,3] ground target location is carried out by adaptive monopulse radar which produces
azimuth and Doppler estimates and the associated variances. In this paper some considerations on the use of
STAP radar in bistatic configurations are made. While being more complex than monostatic radar, bistatic
configurations may offer favorable properties such as covert receiver position and a higher target cross section
in certain radar-target constellations (anti-stealth). Some details on bistatic STAP radar can be found in [25],
chapter 12.

In the bistatic case the GMTI tracking algorithms which are well-developed for monostatic GMTI radar
applications [1,9], have to be adapted to measurements of the bistatic range and range-rate. The resulting
non-linear measurement equations have to be treated appropriately. We here consider approximations within
the framework of unscented Kalman filtering (UKF) [8]. As the association between measurements and the
illuminator responsible for it is known, however, the resulting tracking task is much reduced in complexity
if compared to other multistatic tracking applications such as passive radar with DAB illuminators [31]. In
bistatic GMTI tracking particular emphasis has to be placed on an appropriate representation of the underly-
ing likelihood function. Among its basic constituents is the detection probability which is now a non-trivial
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function of the current sensor-to-target geometry. This bistatic likelihood function is able to model series
of deteriorated or missing detections until the geometry is changing again. By exploiting the sensor detec-
tion model within the likelihood function, however, information on the current location of the clutter notch
explicitly enters into the tracking algorithm and improves track continuation in such situations. As a con-
sequence, the width of the clutter notch and the minimum detectable velocity (MDV) prove to be important
tracking parameters.

This work has the following structure: Section 2 gives a very brief overview of the Bayesian tracking
paradigm. In section 3 we will describe the DAB/DVB-T scenario and give an overview about the challenges
with regard to target tracking. In particular we will address the derivation of the multi-stage MHT algorithm
and numerical results via Monte Carlo runs. Section 4 gives a short introduction of the properties of bistatic
STAP radar, where the derivation of the bistatic GMTI tracking algorithm and numerical results via Monte
Carlo runs will be given. Section 5 summarizes the results.

2 Bayesian Tracking Paradigm

A Bayesian tracking algorithm is an iterative updating scheme for calculating conditional probability density
functions p(xl|Zk) that represent all available knowledge on the object states xl at discrete instants of time
tl. The densities are explicitly conditioned by the sensor data Zk accumulated up to some time tk, typically
the present time. Implicitly, however, they are also determined by all available context knowledge on the
sensor characteristics, the dynamical object properties, the environment of the objects, topographical maps,
or tactical rules governing the objects’ over-all behavior.

With respect on the instant of time tl at which estimates of the object states xl are required, the related
density iteration process is referred to as prediction (tl > tk), filtering (tl = tk), or retrodiction (tl < tk).
The propagation of the probability densities involved is given by three basic update equations, which will be
derived and discussed below and illustrated by examples that appear as limiting cases of the more general
Bayesian approach.

2.1 Prediction

The prediction density p(xk|Zk−1) is obtained by combining the evolution model p(xk|xk−1) with the pre-
vious filtering density p(xk−1|Zk−1):

p(xk−1|Zk−1) evolution model−−−−−−−−−→
constraints

p(xk|Zk−1) (1)

p(xk|Zk−1) =
∫
dxk−1 p(xk|xk−1)︸ ︷︷ ︸

evolution model

p(xk−1|Zk−1)︸ ︷︷ ︸
previous filtering

. (2)

2.2 Filtering

The filtering density p(xk|Zk) is obtained by combining the sensor model p(Zk|xk) with the prediction
density p(xk|Zk−1) according to:

p(xk|Zk−1) current sensor data−−−−−−−−−−→
sensor model

p(xk|Zk) (3)

p(xk|Zk) =
p(Zk,mk|xk) p(xk|Zk−1)∫

dxk p(Zk,mk|xk)︸ ︷︷ ︸
sensor model

p(xk|Zk−1)︸ ︷︷ ︸
prediction

. (4)
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2.3 Retrodiction

The retrodiction density p(xl|Zk) is obtained by combining the object evolution model p(xl+1|xl) with the
previous prediction and filtering densities p(xl+1|Z l), p(xl|Z l) according to:

p(xl−1|Zk)
filtering, prediction←−−−−−−−−−−

evolution model
p(xl|Zk) (5)

p(xl|Zk) =
∫
dxl+1

evolution︷ ︸︸ ︷
p(xl+1|xl)

prev. filtering︷ ︸︸ ︷
p(xl|Z l)

p(xl+1|Z l)︸ ︷︷ ︸
prev. prediction

p(xl+1|Zk)︸ ︷︷ ︸
prev. retrodiction

(6)

Being the natural antonym of “prediction”, the technical term “retrodiction” was introduced by Oliver Drum-
mond in a series of papers [9, 10, 11]. According to his definition (retrodiction “The process of computing
estimates of states, probability densities, or discrete probabilities for a prior time (or over a period of time)
based on data up to and including some subsequent time, typically, the current time.” [9, p. 255]), this term
comprises not only standard smoothing, but also the concept of a retrodicted discrete probability that is
analogous to a smoothed estimate in usual Kalman filtering. For this reason, the notion of “retrodiction” is
general enough and adequate also for the type of algorithms proposed above. Adopting the classical standard
terminology [12], we could speak of fixed-interval retrodiction.

2.4 The Notion of a Track

According to this paradigm, an object track represents all relevant knowledge on a time varying object state
of interest, including its history and measures that describe the quality of this knowledge. As a technical
term, ‘track’ is therefore either a synonym for the collection of densities p(xl|Zk), l = 1, . . . , k, . . ., or of
suitably chosen parameters characterizing them, such as estimates related to appropriate risk functions and
the corresponding estimation error covariance matrices.

If possible, a one-to-one association between the objects in the sensors’ field of view and the produced
tracks is to be established and has to be preserved as long as possible (track continuity). In many applications,
track continuity is even more important than track accuracy. Obviously, the achievable track quality does
not only depend on the performance of the underlying sensors, but also on the object properties and the
operational conditions within the scenario to be observed.

In this context, the notion of track consistency is important, which describes the degree of compliance
between the inherent measures of track quality provided by the fusion process itself and the “real” tracking
errors involved. Track consistency can be verified in experiments with an established ground truth or in
Monte-Carlo-simulations.

Graphical Illustration In Figure 1a the conditional probability densities p(xk−1|Zk−1), p(xk|Zk), and
p(xk+1|Zk+1) resulting from filtering at time instants tk−1, tk, and tk+1 are displayed along with the pre-
dicted densities p(xk+2|Zk+1). While at time tk−1 one sensor measurement has been processed, no mea-
surement could be associated to it at time tk. Hence, a missing detection is assumed. Due to the lacking
sensor information, the density p(xk|Zk) is broadened, since object maneuvers may have occurred. This
in particular implies an increased region, where data at the subsequent time tk+1 are expected (gates). Ac-
cording to this effect, at time tk+1 three correlating sensor measurements are to be processed leading to a
multi-modal probability density function. The multiple modes reflect the ambiguity regarding the origin of
the sensor data and also characterize the predicted density p(xk+2|Zk+1). By this, the data-driven adaptivity
of the Bayesian updating scheme is indicated.
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(a) Forward Iteration (b) Backward Iteration

Figure 1: Scheme of Bayesian density iteration: conditional probability densities resulting from prediction,
filtering, and retrodiction at different instants of times.

In Figure 1b, the density p(xk+2|Zk+2), resulting from processing a single correlating sensor measure-
ment at time tt+2, along with the retrodicted densities p(xk+1|Zk+2), p(xk|Zk+2), and p(xk−1|Zk+2) are
shown. Evidently, available sensor data at the present time can significantly improve the estimates of the
object states in the past.

2.5 Remarks on Approximations

Under more realistic conditions, the probability densities involved typically have the structure of finite mix-
tures, i.e. they can be represented by weighted sums of individual probability densities that assume particular
data interpretation or model hypotheses to be true. This general structure is a direct consequence of the
uncertain origin of the sensor data and/or of the uncertainty related to the underlying object evolution. In
concrete implementations, however, it is always necessary to apply certain approximations in order to handle
such mixtures efficiently. Provided the densities p(xl|Zk) are calculated at least approximately correctly,
“good” estimators can be derived related to various risk functions adapted to the applications. What “good”
means depends on the particular application considered and must often be verified by extensive Monte-Carlo-
simulations and experiments.

Gaußian Mixtures At least approximately correct closed-formula solutions for the Bayesian tracking
paradigm can be derived if the prediction, filtering, and retrodiction densities as well as the sensor and evolu-
tion models belong to certain families of probability densities, so-called mutually conjugate densities. A wide
and mathematically comfortable family of conjugate densities for random vectors x is provided by Gaußian
Mixtues [14], i.e. by weighted sums of Gaußian probability densities, p(x) =

∑
i piN

(
x; xi, Pi

)
with mix-

ture coefficients pi ∈ R that sum up to One,
∑

i pi = 1, but need not necessarily be positive. A Gaußian
mixture density is thus completely represented by a relatively small number of parameters {pi,xi,Pi}i. As
an early example see [15].

For many real-world applications, it has been shown that even more sophisticated functional relationships
describing the physics of the measurement process within a sensor system can be modeled by likelihood
functions of the Gaußian mixture type. Of course, the accuracy of the sensor model, i.e. the number of
mixture components that are actually to be taken into account to approximately describe the underlying
phenomena, depends on the requirements of the underlying application. The same arguments are valid if the
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incorporation of context information, such as road maps, is to be considered or in the case of more complex
dynamics models.

2.6 A Look at Track Initiation

At time t0, the probability density p(x0|Z0) describes the initial knowledge on the object state. As an
example let us consider state vectors xk = (r>k , ṙ

>
k )>, consisting of the object position and velocity, and

a first position measurement z0 with a measurement error covariance matrices R0. Based on z0 and the
context information on the maximum object speed vmax to be expected, a reasonable initiation is given by
p(x0|z0) = N

(
x0; x0|0, P0|0

)
with:

x0|0 = (z>0 ,o
>)>, P0|0 = diag[R0, v

2
maxI]. (7)

In the case of an IMM evolution model, we consider the probability density p(x0, i0|Z0) =
pi00|0 N

(
x0; xi00|0, P

i0
0|0
)

with pi00|0 = 1
r . For a numerically robust and quick initiation scheme from even

incomplete measurements see [17, 18] and the literature cited herein.
Iterative tracking algorithms must be initiated appropriately. Under simple conditions, this is not a diffi-

cult task, as has been shown above (Equation 7). For low observable objects, i.e. objects embedded in a high
clutter background [5, 19, 20, 21] or in case of incomplete measurements [17, 18], more than a single set
of observations at particular data collection times are usually necessary for detecting all objects of interest
moving in the sensors’ fields of view. Only then, the probability density iteration can be initiated based on
‘extracted’ object tracks, i.e. by tentative tracks, whose existence is ‘detected’ by a detection process working
on a higher level of abstraction, which makes use of a time series of accumulated sensor data Zk = {Zi}ki=1.

Assuming well-separated objects at first for the sake of simplicity, we thus have to decide between two
alternatives before a tracking process can be initiated:

• h1: Besides false data, Zk contains also real object measurements.

• h0: There is no object existing in the FoV; all sensor data in Zk are false.

As special case of the more general theory of statistical decision processes, the performance of a track
extraction algorithm is characterized by two probabilities related to the decision errors of first and second
kind:

1. P1 = P (accept h1|h1), i.e. the conditional probability that h1 is accepted given h1 is actually true
(corresponding to the detection probability PD of a sensor).

2. P0 = P (accept h1|h0): the conditional probability that h1 is accepted given it is actually false (corre-
sponding to the false alarm probability PF of a sensor).

Sequential Likelihood Ratio Test In typical tracking applications, the decisions between the alternatives
must be made as quickly as possible on average for given decision probabilities P0, P1. The decision algo-
rithm discussed below fulfills this requirement and is of enormous practical importance. It is called Sequen-
tial Likelihood Ratio Test and was first proposed by Abraham Wald [19, 20].

The starting point for sequential decision making in the context of track extraction is the ratio of the
conditional probabilities p(h1|Zk) of h1 being true given all data have been processed appropriately and
p(h0|Zk) of h0 being true given the sensor data. If p(h1|Zk) is close to One and p(h0|Zk) close to Zero, the
ratio is large, while it is small if p(h1|Zk) is close to Zero and p(h0|Zk) close to One. If both hypotheses are
more or less equally probable, the ratio is of an intermediate size. According to Bayes’ Theorem, we obtain:

p(h1|Zk)
p(h0|Zk)

=
p(Zk|h1)
p(Zk|h0)

p(h1)
p(h0)

. (8)
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Since the a priori probabilities p(h1) and p(h0) are in most applications assumed to be equal, this defines a
test function, which is called likelihood ratio:

LR(k) =
p(Zk|h1)
p(Zk|h0)

(9)

and can be calculated iteratively by exploiting the underlying object evolution and sensor models p(xk|xk−1)
and p(Zk|xk).

An intuitively plausible sequential test procedure starts with a time window of length k = 1 and iter-
atively calculates the test function LR(k) until a decision can be made. At each step of this iteration the
likelihood ratio is compared with two thresholds A and B:

LR(k) < A, accept the hypothesis h0 (i.e. no object existent)
for LR(k) > B, accept the hypothesis h1 (i.e. an object exists)

A < LR(k) < B, expect new data Zk+1, repeat the test with LR(k + 1).

Properties Relevant to Tracking Note that the iterative calculation of likelihood ratios has a meaning,
which is completely different from the iterative calculation of probability density functions, although similar
formulae and calculations are implied as will become clear below. By iteratively calculated likelihood ratio
we wish to make a the decision, whether an iterative tacking process should be initiated or not.

1. The most important theoretical result on sequential likelihood ratio tests is the fact that the test has
a minimum decision length on average given predefined statistical decision errors of first and second
kind, which have to be specified according the the requirements in a given application.

2. Furthermore, the thresholds A, B can be expressed as functions of the decision probabilities P0, P1,
i.e. they can be expressed as functions of the statistical decision errors of first and second kind and
are thus not independent test parameters to be chosen appropriately. A useful approximation in many
applications, is given by:

A ≈ 1− P1

1− P0
, B ≈ P1

P0
. (10)

Relation to MHT Tracking Likelihood ratios LR(k) can be calculated iteratively as a by-product of the
standard Bayesian tracking methodology previously discussed, provided we look upon it from a different
perspective. This can be seen directly:

LR(k) =
p(Zk|h1)
p(Zk|h0)

(11)

=
∫
dxk p(Zk,mk,xk, Zk−1|h1)
p(Zk,mk, Zk−1, h0)

(12)

=
∫
dxk

likelihood︷ ︸︸ ︷
p(Zk,mk|xk, h1)

prediction︷ ︸︸ ︷
p(xk|Zk−1, h1)

|FoV|−mk pF (mk)︸ ︷︷ ︸
clutter model

LR(k − 1). (13)

According to these considerations, the likelihood ratio is in general a sum of a temporally increasing number
of individual likelihood ratios,

LR(k) =
∑
i

λik. (14)
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For avoiding memory explosion in calculating the likelihood ratio, the same type of mixture approximation
techniques as previously discussed can be applied (merging of similar, pruning of too small summands λik).
As soon as a decision in favor of object existence is taken, e.g. at time tk, the normalized individual likelihood
ratios can be used for initializing the tracking process:

p(xk|Zk) =
∑
i

λik∑
j λ

j
k

N (xk; xik|k, P
i
k|k), (15)

where xik|k and Pi
k|k are by-products of the calculation of λik. As soon as the track has been initiated, the

calculation of the likelihood ratio can be restarted as it is a by-product of track maintenance. The output of
these subsequent sequential ratio tests can serve for re-confirming track existence or track deletion, depend-
ing on the test output. See [19, 5] for details. So far, the problem of multiple well-separated object track
extraction, track maintenance, and track deletion, i.e. the full life cycle of a track, is solved in principle. See
[21] for an alternative calculation of LR(k) by using PMHT techniques and [16] for a proof that for well
separated objects this scheme is identical with Gaußian Mixture Cardinalized PHD filtering (GM-CPHD).

3 Multistatic Tracking using DAB/DVB-T

W.l.o.g. the passive observer will be positioned at the origin. The positions of the ith stationary illuminator
is given in Cartesian coordinates by xs,i. Time Difference of Arrival (TDoA) and the bistatic Doppler shift
are measured, which are directly correlated to the bistatic range ri and bistatic range-rate ṙi.

TDoA =
ri − ||xs,i||

c
, Doppler = − ṙi

λ
, (16)

where c is the speed of light and λ the wavelength of the signal. The measurement equations in bistatic range
and range-rate are,

ri = ||p||+ ||p− xs,i|| ṙi =
(

p
|p|

+
p− xs,i
|p− xs,i|

)T
· v, (17)

where p and v denote the target’s position and velocity in Cartesian coordinates. The bistatic range equation
describes ellipsoids in three-dimensional Cartesian space with foci at the observer and illuminator. The
bistatic Doppler shift depends on the geometry and velocity of the target. With the target state x = (p,v)T

and the measurement vector zi = (ri, ṙi)T , we abbreviate the measurement equation by zi = h(x,xs,i).
We estimate the target position and velocity from two synchronous measurements using two different

illuminators (xs,1 and xs,2). If we project this scenario on a 2D plane, geometrically, this would be inter-
secting two ellipses with foci at the origin and xs,i, c.f. Fig. 2. This basically means solving two quadratic
equations successively, which can render up to four solutions, but since in this case the two ellipses share one
focal point, there will be only two solutions. To estimate the velocity, we see that (17) is linear in v. After
the position has been estimated, if we set the speed in z to zero, two Doppler measurements give us a linear
equation system. Of course if the position estimate is off, this will heavily punch through on the velocity
estimate.

Estimation ambiguity adds to already existing ambiguity problems – not being able to associate mea-
surements to senders – not to speak about multi-target tracking.

3.1 Problem Statement

To discuss the association problem, we consider the following example of one target, one observer and
three illuminators, which involves up to three TDoA and Doppler measurements per time stage, see Fig. 3.
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Figure 2: 2D scenario, combining TDoA information of two illuminators

Table 1: Number of target estimates

N 2 3 4 5 6(
N
2

)
1 3 6 10 15(

N
3

)
0 1 4 10 20

Mis-association and ambiguity result in false estimates (ghosts) that show similar movements like a target.
However, good knowledge of the target movement may help to unmask some ghosts.

The approach, presented here, is based on a different criterion. We exploit that target estimates lie
close to each other. So, if we regard measurements of more than two illuminators, this will result in target
clustering. This method avoids fostering ghost tracks and provides a quick decision criterion. But doing so,
target measurements of at least three illuminators are needed to extract a target track.

Without any error the target would lie in the intersection of all the ellipses. However, in a real scenario
we have to consider noisy measurements and additional error caused by the unknown height of the object ,
because the third dimension is neglected in this model. Further, finding the true target will be impeded by
missing detections.

Measurements of at least three illuminators are also a prerequisite for 3D Cartesian state estimation,
which is of course the final aim of target tracking. For sure, combining measurements of three illuminators
also yields a better 2D estimation performance, since the influence of the unknown height of the target
can be neglected. Nevertheless, considering the number of possible combinations, justifies working with
combinations of only two illuminators in the Deghosting stage.

In the following we defineM to be the number of measurements andN the number of illuminators. Then
we focus on the association problem, that arises, if 2 or 3 measurements are combined. The number of true
target estimates is

(
N
2

)
or
(
N
3

)
respectively. For clustering to work well the number of true target estimates

should be as large as possible. Combining three measurements is only favorable, if data of six illuminators is
available, c.f. Table 1. Moreover, we would need at least four illuminators to solve the association problem.
Besides, we have to consider the number of total possibilities, given by 2

(
N
2

)
M(M − 1) in the 2D-case
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Figure 3: Association problem: one target, three illuminators (triangles), one receiver (circle), three mea-
surements, one time scan; TDoA measurements, associated to different illuminators, are shown with ellipses;
2D estimates are given by black dots with corresponding velocity vectors

Table 2: Number of total estimates

N = 5, M 5 6 7 8 9 10
total: 400 600 840 1120 1140 1800
total: 600 1200 2100 3360 5040 7200

and
(
N
3

)
M(M − 1)(M − 2)1 in the 3D case. Since the number of measurements is usually larger than

the number of illuminators (multiple targets and false alarms) the 3D case would blow up complexity, c.f.
Table 2

3.2 Primary Tracking of the Measured Data

To be able to distinguish between ghosts and targets we need a high probability of detection. But an increas-
ing number of measurements will lead to increasing computational complexity. We use a primary tracking
stage to select measurements of moving objects and to enhance the probability of detection. Tracking is
done by Multihypothesis Tracking (MHT) [5] assuming a third order motion model. The state vector of the
primary tracking stage is given by z̄ = (r, ṙ,˙ṙ)T , where r and ṙ are measured and ˙ṙ is initialized with zero
mean. With this assumption we restrict the movements of potential tracks to reasonable behavior of range
and corresponding range-rate.

1Combining three measurements gives usually only one solution (non-ambiguous), since the second solution can be neglected
by only considering heights greater than zero.

RTO-EN-SET-133 3 - 11 

 



The primary tracking stage is not only important in terms of computational speed, but is also a prereq-
uisite to decide on association possibilities considering several time stages, since measurements collected in
one track belong to the same target and illuminator.

3.3 Deghosting in Cartesian Coordinates

During the course of the algorithm, we need to destine Cartesian target state estimates. Tracking will be
done again by MHT starting from a probable target state estimate. Since the request for 3D Cartesian
estimates would make association more difficult, we transform measurements of two different illuminators
into 2D Cartesian estimates with a fixed height. At the moment we have no knowledge about association
and need to consider all possibilities. Enumerating all these possibilities in future stages would lead into
memory overload fast. We therefore want to decide soon if an estimate belongs to a true target and get rid
of additional ballast. Likelihood Ratio (LR) testing supplies a quick appraisal to find the true association
possibilities.

For a given region G in 2D-Cartesian coordinates of volume |G| we model the background distribution
according to a Poisson distribution. The probability to observe n false estimates in the region G is given by

pF (n) =
1
n!

(|G|ρF )ne−|G|ρF , (18)

with spatial false return density ρF . Certainly, this assumption does not hold for different time stages. More-
over, since false 2D Cartesian estimates are generated by false association systematically and not randomly,
we will be able to calculate the spatial false estimate density from the knowledge of observed measurements
and number of considered illuminators.

3.3.1 Finding probable target estimates

Every estimate x̂ = (p̂, v̂) is currently given by a position and velocity vector and a corresponding covari-
ance matrix P̂, i.e. x ∼ N (x; x̂, P̂). So, for example, the true target state is supposed to lie inside the 3σ
gate given by the covariance matrix with probability 0.937 [7].

For every state estimate x̂ we will count for the number of estimates x̂i lying in its kσ gate, i.e.

n = #{x̂i|(x̂− x̂i)T P̂−1(x̂− x̂i) < k2}. (19)

We calculate a Likelihood Ratio considering the hypotheses H0 the true target state estimates lie inside this
region andH1 there are only false estimates. Since the setup parameters (probability of detection (Pd), false
return density ρF , number of illuminators N ) are given in terms of measurements and not in 2D-Cartesian,
we need to reconstruct the number of associated measurements m from the number of observed estimates n
using the relationship n =

(
m
2

)
. Solving for m yields a functional relationship dependent on n:

mn =

{
0 if n = 0

1
2 +

√
1
4 + 2n otherwise

(20)

With this, the probability of finding n estimates, including available true target estimates, can be approx-
imated by a binomial sum depending on the probability of detection and the number of illuminators,

p(n|H0) =
n∑
i=0

(
N

mi

)
Pmi
d (1− Pd)N−mipF (n− i). (21)

Here PD is the mean probability of detection of all illuminators involved, generally it is dependent on the
geometry, so using different PDs for different illuminators should be more reasonable in a real scenario.
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The LR will be calculated by dividing the probability, that no measurement belongs to a target using the
background distribution with volume vol

L(x̂) =
p(n|H0)
pF (n)

. (22)

In the four dimensional (2D position and 2D velocity) case the volume of the kσ area can be calculated by
[7]

vol =
k4π2

2

√
det(P̂). (23)

In the following we call estimates probable, if L(x̂) > 1.
In some points this approach is heuristic, but has shown to work quite well, see subsection 3.6. To do

calculation more exactly we would need to replace (19) by,

n = #{x̂i|(x̂− x̂i)T (P̂ + P̂i)−1(x̂− x̂i) < k2}. (24)

However, computational complexity increases enourmously by inverting matrices in each single step.
An alternative approach is to look back at the measurements space. For each estimate and each possible
illuminator xs,j we need to destine an expectation ẑj and covariance R̂j according to the relationship given
by the measurement equation h. As an advantage the measurement covariance matrix R is fixed, so (19) can
be replaced by

n = #{zi|(ẑj − zi)T (R̂j + R)−1(ẑj − zi) < k2}. (25)

Both approaches ensure that we take care of the actual uncertainty for geometrical reasons given by the
covariance matrix. Regarding to estimates with big uncertainties we will need to search in a bigger region
for similar estimates, simultaneously the probability to find some estimates by chance increases. Therefore, it
will be important to describe the error in the covariance matrix well. Since generally the height of the object
is not known in advance, we pick up uncertainties, resulting from the unknown height, in the covariance
matrix [6].

3.3.2 Evaluate association possibilities

The main task of this second tracking stage is to evaluate association possibilities. In the previous subsec-
tion we derived an approach to neglect measurement to illuminator combinations by LR testing. Probable
estimates, describing a possible association between measurements and illuminators for one time stage, will
be used as input data of a second MHT to evaluate association. To do this, we use Likelihood Ratio testing
according to the track extraction technique presented in [19].

Let ZT = (zTt=Tm
0

) describe a primary track in measurements up to time T , where Tm0 is the time of track
extraction in measurements and zt holds all information of the track at time t. If a 2D track Y T belonging to
target i is extracted, we can pursue with LR testing. Considering
H0: ZT belongs to target i and illuminator j and
H1: Zt belongs either not to illuminator j or target i.

we iteratively calculate

p(ZT |xs,j ,H)

=p(zT |ZT−1,xs,j ,H)p(ZT−1|xs,j ,H),
(26)

where p(zT |ZT−1,xs,j ,H0) will be calculated during the filtering update and p(zT |ZT−1,xs,j ,H1) =
|FoV |−1, i.e. false associated measurements are supposed to be uniformly distributed in the observation
area FoV . A measurement track will be allocated to a given 2D track if the LR exceeds a given threshold or
will it be neglected if it undergoes one.
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Figure 4: Simulated scenario: constellation of observer and illuminators is based on a real DAB network in
Rheinland-Pfalz, Germany

3.4 3D Tracking

The final stage of the tracking algorithm yields a 3D Cartesian estimate by fusing all available information
collected in the previous tracking stages. So, if information of more than two illuminators is available, it will
deliver improved 2D estimates and additional information about the height of the target.

3.5 Runtime Considerations

The runtime of the MHT algorithm does mainly depend on the number of considered hypotheses. So, an
increasing number of false alarms as input of the algorithm will lead to increasing computational complexity.
However, in this case the second tracking stage, the Deghosting, seems to be more time consumptive than
the primary tracking. The realtime-capability of the algorithm does mainly depend on how fast a decision
between ghosts and targets can be reached. The more illuminators are considered, the more combinations
need to be tried out, but the better association works.

3.6 Numerical Analysis

In this section we discuss numerical results for a scenario with four illuminators, one receiver and one
target flying in a circle, c.f. Fig. 4. Starting with a height of 4km the target climbs slightly to 7.6km. The
constellation is based on true DAB sender localizations in Rheinland-Pfalz, Germany.
The probability of detection is chosen to be 0.9 for each illuminator-receiver pair. Measurements are gathered
every 10sec. with Gaussian distributed measurement error of zero mean. The measurement covariance matrix
of the bistatic range and range-rate is given by R = diag[

]
(σ2
r , σ

2
ṙ

)
with σr = 65m and σṙ = 2m/s. The

false alarm rate is 20 false measurements per time stage and is uniformly distributed in the measurement
space. To generate 2D Cartesian estimates we use the following modeling assumptions on the target height:
z ∼ N (5km, 2km).

In Fig. 5 the results of the primary tracking stage are shown. Four measurement tracks are extracted,
one track for each illuminator. We note that modeling movements in bistatic range and range-rate is diffi-
cult, since movements depend on the unknown target-illuminator-receiver geometry. For example the track
colored in magenta shows a hard turn, when the target crosses the associated illuminator.

For a statistical analysis we use 100 Monte Carlo Runs and compare the root-mean-squared error (RMSE)
with the root-mean trace of the covariance (RMTC), i.e. for the estimates x̂i, truth x and estimated covariance
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Figure 5: Primary tracking: tracking results for different iluminator-receiver pairs are shown by different
colors; true measurements (without error) are plotted by blue dots.

P̂i

RMSE(x) =

√√√√ 1
N

N∑
i=1

|x̂i − x|2

RMTC(x) =

√√√√ 1
N

N∑
i=1

trace(P̂i).

(27)

In Fig. 6 the RMSEs of the strongest hypothesis are plotted for each illuminator-receiver pair in different
colors; for comparison the RMTC is added in black. Due to maneuverings the results are not persistently
consistent, during the critical phases the RMSE increases faster than the RMTC.

Fig. 7 responds to the second tracking stage, the Deghosting in 2D Cartesian. We compare the RMSE of
the x/y position estimate with the corresponding RMTC. The RMSE is sligthly increasing whilst the RMTC
has nearly the same level during the whole run. This could be explained by the target height. The RMSE
increases the more the actual height of the target differs from the expected height (here: 5km). In contrast,
the RMTC does not depend on the actual height but only on the modeling assumptions. So, if the target
height exceeds a certain value, dependent on the assumed deviation (here: 2km), tracking fails.

The information accumulated in previous tracking stages will next be transformed into 3D Cartesian
estimates. The 3D Tracking depends directly on the Deghosting stage and the primary tracking and can
not be analyzed separately. In Fig. 8 the mean number of measurements, which could be allocated to the
track, is plotted against time. The estimation performance in height, delivered by the 3D tracking, is directly
correlated to the number of measurements used; the RMSE is shown in Fig. 9. Availability of four instead
of only three measurements results in improved height estimation. Fig. (10) shows numerical results for
the 3D tracking performance in x/y. Again, the RMSE in x/y-position is compared to the RMTC. We
observe a better estimation performance, compared with the 2D tracking stage, if measurements of three or
four illuminators can be fused. On the other hand the estimation performance is strongly influenced by the
allocation of measurements that is done in the Deghosting stage and depends therefore on the geometry and
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Figure 6: Primary tracking: RMSE of different illuminator-receiver pairs is shown by different colors; RMTC
in black
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Figure 7: 2D Cartesian Tracking: RMSE and RMTC in x/y
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Figure 8: Mean number of measurements that could be allocated to the 2D track for each scan.
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Figure 9: RMSE of target height for 3D Cartesian Tracking
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Figure 10: 3D Tracking results: RMSE and RMTC in x/y

on a good appraisal for the height of the object. At the end of the flight the target exceeds the height of 7km
and association fails.

Number of probable estimates In this subsection we discuss the dependency of the approach on the target-
illuminator-receiver geometry. We consider the same scenario as described above, but set PD = 1 and do
not consider false measurements. We will run 100 Monte-Carlo simulations in a plane of 150km by 140km
(possible target positions, velocity is chosen randomly) considering the number of probable estimates, which
are selected by Likelihood Ratio testing, see subsection 3.3.1.

Fig. 11 shows the mean number of true target estimates (maximal 6) that could be found by LR testing
for each geometry. In a region close to the receiver finding probable target estimates is difficult due to bad
geometrical conditions (estimates with covariance greater than 1.5km are ignored), but there are also large
areas, where the number is greater than one, which is sufficient for 2D tracking. Considering all possible
combinations (here: 144), we are also interested in the number of ghost estimates that are declared to be
probable erroneously. For these simulations the maximal mean number is 9, which is a low false alarm rate
for the MHT.

4 Tracking of ground targets with bistatic airborne radar

4.1 Properties of bistatic STAP radar

In the following we focus on two important properties of bistatic STAP radar: the dependence of the clutter
Doppler on range and the distribution of clutter Doppler frequencies on the ground. The clutter Doppler
frequency is given by

fD =
νT
λ

cos(ϕT − δT ) cosϑT +
νR
λ

cos(ϕR − δR) cosϑR (28)

where ν means velocity, ϕ azimuth, ϑ elevation, δ course angle and λ wavelength. The subscripts R and T
refer to receiver and transmitter, respectively.
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Figure 11: Scenario with 4 illuminators (shown by triangles) and one receiver (circle). Color bar denotes the
mean number of probable estimates belonging to the true target.

4.1.1 Range dependence of the clutter Doppler

In monostatic sidelooking radar the look direction coincides with curves of constant Doppler (isodops).
Both the look directions and the isodops are hyperbolas on the ground. This means that the clutter Doppler
is range-independent. For any other configuration (monostatic forward looking, bistatic) the clutter Doppler
depends generally on range. In Fig. 12 we find for illustration a bistatic along-track configuration with both
the receiver (R) and the Transmitter (T) flying on the same path at the same speed. The black curves and
colors are curves of constant clutter Doppler. The white hyperbolas denote the directions illuminated by the
transmitter, i.e., those directions from where the ground echoes are scattered back. As this configuration
is close to monostatic the isodops look similar to hyperbolas, however slightly different from the transmit
directions which is an indication for a slight range dependence of the clutter Doppler. The range dependence
can be seen clearly in the azimuth-Doppler contour plot (Fig. 13). For large ranges the contour becomes a
diagonal which is the azimuth-Doppler curve of sidelooking monostatic radar. In this case the clutter echoes
are range independent. Fig. 14 shows the associated STAP processor performance (improvement factor vs
normalized Doppler, look direction 80). It can be noticed that the Doppler position clutter notch (i.e. the
region where detection is unlikely) varies with range.

In Fig. 15 the transmitter flight direction has been chosen orthogonal to the receiver. As can be seen
this causes a dramatic distortion of the isodops. Fig. 5 shows the associated azimuth-Doppler contour plot.
Again we notice the range dependence of the clutter Doppler. Adaptation of the STAP processor requires the
estimation of the space-time clutter covariance matrix from secondary data (clutter data from neighbouring
range cells.). This is possible only if the clutter Doppler is constant with range. If not (as in the examples
shown) certain techniques for Doppler compensation [5,6], azimuth-Doppler compensation [28] and align-
ment of the azimuth-Doppler contours have to be applied to the secondary data before estimation of the
clutter covariance matrix.
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Figure 12: Isodops for bistatic airborne radar, horizontal along track configuration, R and T aligned, νR =
νT = 90 m/s, platform height: 5000m, color bar denotes Doppler [Hz].

4.1.2 Doppler distribution on the ground

In Fig. 12 the distribution of clutter Doppler frequencies is fairly homogeneous. i.e., the spatial Doppler
gradient is relatively constant. Exceptions can be noticed in and against the flight direction where larger
areas with nearly constant Doppler can be noticed. However, a sidelooking antenna will be blind in these
directions (nulls of element patterns) so that the constant Doppler areas have no significant effect on the
detection performance during tracking. It should be remarked that in forward looking monostatic radar the
large constant Doppler areas show up right in the main look direction which may be exploited to simplify
the STAP architecture. If receiver and transmitter move on different paths (Fig. 4) the large constant Doppler
areas may move to angles visible by the radar, here the lower left (dark red) and upper right (dark blue)
corners. Under such conditions the constant Doppler areas will have impact on the tracking process. If the
tracked target moves through such a constant Doppler area at the clutter Doppler frequency, much wider
clutter notches (areas of low probability of detection) may be observed during tracking than determined by
the system dimensions (array aperture, coherent processing interval; such notches can be seen in Fig. 14).
It should be noted that configurations as shown in Fig. 15 are divergent, i.e., the configuration and hence,
the bistatic radar properties change with time. In addition to the widening of clutter notches during tracking
the variability of the bistatic configuration causes additional complexity. Certainly constant configurations
as shown in Fig. 1 (others are possible) are easier to handle and avoid wide clutter notches. However, in
some applications such as hybrid bistatic space/air configurations variable configurations are unavoidable
because the flight path of the space based transmitter is predetermined by the satellite and the flight path of
the receiver is determined by the mission.

4.2 Elements of Bayesian GMTI tracking

In a Bayesian view, track maintenance is an iterative updating of conditional probability densities of the
(joint) kinematical target state xk at time tk given all accumulated sensor data Zk and all available a priori
information on the target dynamics and the sensor performance in terms of statistical models. Each update
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Figure 13: Doppler-azimuth contours for the configuration in Fig. 1 (normalized Doppler vs cosine of
azimuth angle, o R=10km, * R=20km, x R=30km, + R=100km)

consists of a prediction, which is determined by the target dynamics model. The prediction is followed by
a filtering step, which exploits the current sensor data and the sensor model. The sensor data at each scan
k, as well as the sensor model, are the constituents of the likelihood function. According to Bayes’ rule
the conditional density at time k given all sensor data up to and including time k can be calculated from
the prediction and the likelihood function. In many cases the sensor data are ambiguous; i.e. there exists a
set of exhaustive and mutually exclusive data interpretations. We thus have to deal with densities obeying
the structure of finite mixtures, weighted sums of individual densities. This is a consequence of ambiguities
inherent in the data or the models used. From the densities optimal estimators can be derived according to
particular cost functions.

4.2.1 System Model

The target state xk = (pk,vk)T = (xk, yk, zk, ẋk, ẏk, żk)T is given in 3D Cartesian coordinates assuming
a linear movement model. In the same way the localization and velocity of the source and reveiver is given
by xSk = (xSk , y

S
k , z

S
k , ẋ

S
k , ẏ

S
k , ż

S
k )T and xRk = (xRk , y

R
k , z

R
k , ẋ

R
k , ẏ

R
k , ż

R
k )T . Here we consider measurements

in terms of the bistatic range rk, the azimuth ϕk, the elevation ϑk and the bistatic range-rate ṙk, which is
proportional to the measured Doppler shift. The measurement equation zk = (rk, ϕk, ϑk, ṙk)T = h(xk)is
given by:

rk = ||pk − pSk ||+ ||pk − pRk ||

ϕk = arctan
yk − yRk
xk − xRk

ϑk = arctan
zk − zRk√

(xk − xRk )2 + (yk − yRk )2

ṙk =
(pk − pSk )(vk − vSk )T

||pk − pSk ||
+

(pk − pRk )(vk − vRk )T

||pk − pRk ||

(29)
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Figure 14: Improvement factor vs normalised Doppler: range dependence of clutter notches /look direction
80)

Assuming the target to be constantly moving at height zero the approach can also be applied to measurements
of the bistatic range, the azimuth and the bistatic range-rate only.

4.2.2 Track Initialization

The measurement equation described above is everything we need to apply the Unscented Kalman Filter
update formulas [8]. However, for track initialization in 3D Cartesian we need to transform measurements
into the Cartesian space. Again we use Unscented Transform to generate an initial estimate in x,y and
z. The transformation can be determined analytically, but is too lengthy to be displayed here (we used
MATHEMATICA [33] to solve the equations).

4.2.3 GMTI-specific likelihood function

Doppler blindness occurs if the bistatic radial velocities of the target as well as the velocity of the surrounding
mainlobe clutter return are nearly identical. This defines the location of the bistatic GMTI clutter notch in
the state space of a ground target and, as such, reflects a fundamental physical fact without implying any
further modeling assumptions. The detection model must thus reflect the following phenomena:

(i) The detection probability depends on the target state and the sensor/ target geometry,

(ii) The detection probability is small in a certain region around the clutter notch characterized by the
minimum detection probability (MDV),

(iii) far from the clutter notch, the detection probability depends only on the directivity pattern of the sensor
and the target,

(iv) there is a narrow transient region.

In this work we will only analyze the effect of the clutter notch, so the probability of detection is modeled
to be fixed outside of the clutter notch, its value is given by pD. Let ṙt be the range-rate of the target and ṙC
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Figure 15: Isodops for bistatic airborne radar, orthogonal flight directions of R and T, νR = νT = 90m/s,
platform height: 5000m, color bar denotes Doppler [Hz].

the range-rate of the corresponding background, then we consider the distance nc(xk) = |ṙt − ṙC |. In close
analogy to the discussion in [1,9] the detection probability can be written as a sum of Gaussian-type functions
reflecting the current sensor-to-target geometry which describes the basic underlying physical facts.

PD(xk) = pD

(
1− MDV√

ln(2)/π
N
(

0;nC(xk),
MDV 2

2 ln(2)

))
(30)

’Negative’ sensor evidence [32], i.e. the lack of an expected sensor measurement, is equivalent to a fictitious
measurement (here: the distance between two range-rates is zero), which provides some information.

Provided detection has actually occurred, the measurements of the kinematical target parameters bistatic
range, azimuth, elevation and bistatic range-rate are assumed to be bias-free with normally distributed mea-
surement errors. As is usual in the tracking literature, false detections or detections produced by unwanted
objects are assumed to be equally distributed in the measurement space and independent from revisit to re-
visit, their number being Poisson distributed with a spatial false return density ρF . For a set of incoming
measurements Zk = (z1

k, z
2
k, · · · , z

nk
k ) the following interpretation possibilities exist

1. One of the nk measurements belongs to the target

2. One of the nk measurements belongs to the target, even through the target is near to the Clutter Noch

3. The target has not been detected since it is in the Clutter Notch.

4. The target has not been detected due to other reasons (1− pD).

The tracking update is driven by the likelihood function which proves to be proportional to a sum of Gaus-
sians. Let Gf = N

(
0;nC(xk), MDV 2

2 ln(2)

)
be the Gaussian density w.r.t. the fictitious measurement and
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Figure 16: Doppler-azimuth contours for the configuration in Fig. 4 (normalised Doppler vs cosine of
azimuth angle, o R=10km, * R=20km, x R=30km, + R=100km)

Gnm = N (znk , h(xk),R) then

p(Zk, nk|xk)

∝ (1− PD(xk))ρF + PD(xk)
nk∑
n=1

Gnm

= (1− pD)ρF + pDρF
MDV√
ln(2)/π

Gf

+
nk∑
n=1

(
pDG

n
m − pD

MDV√
ln(2)/π

GnmGf

)
(31)

Form this and the predicted density p(xk|Zk−1) we can deduce the updated density by

p(xk|Zk) ∝ p(Zk, nk|xk)p(xk|Zk−1). (32)

The derivation of the update formulas leads to the standard Kalman update formulas by using the fictitious
measurement in the cases 2 and 3 [22],[30]. Conditional probability densities of the target state prove to be
a Gaussian mixture in an approximate sense. We have to be aware of possibly negative mixture coefficients.
This reflects the fact that, in case of detection, the target must have a certain minimum distance from the
clutter notch, otherwise it could not have been detected at all. Nevertheless, also the possibly negative
coefficients sum up to one.

Fusion of Information from Different Bistatic Geometries Availability of more than one source or re-
ceiver will result in additional detection opportunities. If the measurements of nS bistatic geometries are
gathered synchronously the cumulative probability of detection P cD can be written as

P cD = 1−
nS∏
i=1

(1− P iD), (33)
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Figure 17: Bistatic geometry; two flying platforms (transmitter and receiver); and one ground moving target

where P iD denotes the probability of the ith source-receiver geometry. In section 4.3 we will present results
of a multistatic geometry concerning one source and two receivers. The bistatic approach can be easily
expanded, by updating the target state at time tk for both geometries after each other.

Realization aspects To control the number of mixture components we follow the spirit of the standard
PDA approach. At each time the Gaussian mixture will be approximated by a single Gaussian. The general-
ization to more refined approximation techniques is straightforward and leads to MHT (multiple hypothesis
tracking).

4.3 Tracking Results: Discussion

In this section selected numerical examples are discussed based on the notional set of radar parameters. We
consider the following scenario, see Fig. 18: Three flying sensor platforms, one source and two receivers are
moving in different heights but with same speed, ẋR = ẋT = 110 m/s. The ground moving target drives
diagonal to the path of the sensors with velocity of 5m/s in x and y direction. The duration of the simulation
is 500seconds with sampling rate of 5seconds. In second 360 the target stops for 80 seconds. First we look
at the two possible bistatic geometries, concerning receiver1 and receiver2 separately. For both cases the
target is in a geometrical Clutter Notch as can be seen by calculating the expected probability of detection
(PD) according to the modeling assumptions, see Fig. 19. For receiver1 the PD is quite low during the
most of the run. With respect to receiver2 it starts with a better PD but as an additional challenge the target
stop event occurs for the same time at which the target is also in the geometrical clutter notch. Figures 20
and 21 illustrate the tracking performance in terms of the root mean squared error (RMSE) and the tracking
error variance as a function of time (Cartesian position in ground coordinates and velocity in x/y). In
the figures the impact of the GMTI clutter notch model on the tracking performance is compared with the
standard approach, which ignores the detection model. Each performance measure has been calculated in
a Monte-Carlo simulation over 100 runs. The deviations of the measurement errors in the simulation and
as parameters of the tracking algorithm has been set to (σr, σϕ, σϑ, σṙ) = (50m, 0.1o, 1o, 6.6m/s) for the
bistatic range, the azimuth, the elevation and of the bistatic range-rate. The shadowed region indicates the
square-root of the corresponding diagonal element in the covariance matrix provided by the tracking filter.
It is a measure for the ”self consciousness” of the tracking filter. For both cases we observe improved
estimation errors and a slight decrease in the corresponding estimation error covariance by using the clutter
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Figure 18: Considered multistatic scenario; two receiver one source; one ground moving target

notch model. Even though a track is initiated by a true measurement a low probability of detection and the
consideration of false measurements may cause that for some tracks the estimated target state xk|k differs
strongly from the true trajectory xk. Let Pk|k be the estimated covariance for time k, then we will mark tracks

as ”death” if ||xk|k − xk|| > 4
√

max(eig(Pk|k)) and exclude them from the error statistics. The number of

”death” tracks for the tracking concerning receiver1 is 25% (clutter notch model) and 56% (without clutter
notch modell), as well as 18% (clutter notch Model) and 50% (no clutter notch Model) for receiver2. So,
imbedding the clutter notch model in the tracking algorithm provides some opportunities to hold track in
spite of bad tracking conditions. Finally, by fusing the information of the two bistatic geometries, Fig. 22,
the estimation performance improves and the target stopping event is clearly detected by the clutter notch
model. Due to the improved total probability of detection the number of death tracks has decreased to 0%
for the clutter notch model and 5% else.

5 Conclusion

• We provided a multi-stage MHT algorithm, adapted on the special request of using DAB or DVB-T.
The key challenge on target tracking in these single frequency networks is, that the association between
illuminator and measurements is unknown. We demonstrated this aspect by means of simulation and
developed a strategy to evaluate association possibilities by using sequential LR testing.

• We included numerical analysis using one hundred Monte Carlo runs for all three tracking stages.
Especially, improvements in estimation performance by combining multiple measurement information
has been pointed out.

• The algorithm is still in development and its potential is not yet exploited. The strength of the algorithm
lies in dividing the whole procedure in partial stages. Information transfer between these stages has
to be handled carefully and needs to be optimized to make the algorithm to work as good as possible.
For example an improved transfer from the 3D-Tracking to 2D-Tracking should make the algorithm
more robust and precise.
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Figure 19: Probability of detection for the considered scenario; calculated according to the modeling as-
sumptions

• In bistatic air-to-ground applications in general the bistatic clutter Doppler is range dependent.

• The isodop charts show in general areas of high and low Doppler gradient. For sidelooking monostatic
radar constant Doppler areas coincide mostly with the nulls of the array element patterns and have no
significant impact on the tracking process.

• For other configurations (transmit and receive paths with different directions, forward looking) large
areas of constant Doppler may occur at angles visible by the radar which may lead to wide clutter
notches during tracking.

With respect to the tracking performance bistatic air-to-ground applications we made the following observa-
tions from our numerical investigations:

• By exploiting the proposed bistatic GMTI detection model in combination with approximations of the
type used in Unscented Kalman filtering in the tracking process we obtain a filter performance which
is more or less consistent in that the RMS error of the tracker is nearly the same as the filter covariance
for the multistatic approach and slightly pessimistic in bistatics.

• In case of a target-in-clutter-notch-event the filter error covariances are reduced in size if the clutter
notch model is used. This has impact on all decisions based to the tack innovation statistics in a
tracking system.

• The target-stop-event itself can be detected and especially in the multistatic scenario it is characterized
by a very low RMSE error with respect to target velocity. This has impact on track continuity, an
important performance measure in system applications.

• Even in case of a poor detection performance a certain track quality can still be obtained provided the
proposed bistatic GMTI detection model is used.

RTO-EN-SET-133 3 - 27 

 



0 100 200 300 400

500

1000

1500

2000

a. clutternotch modell

tracking time [sec]
E

rr
or

: p
os

iti
on

 x
/y

 [m
]

 

 
RMSE(Target)
Covariance

0 100 200 300 400

500

1000

1500

2000

b. no clutternotch modell

tracking time [sec]

E
rr

or
: p

os
iti

on
 x

/y
 [m

]

 

 
RMSE(Target)
Covariance

0 100 200 300 400 500
0

10

20

30

40
c. clutternotch modell

tracking time [sec]

E
rr

or
: v

el
oc

ity
 v

x/
vy

 [m
/s

]

 

 
RMSE(Target)
Covariance

0 100 200 300 400 500
0

10

20

30

40
d. no clutternotch modell

tracking time [sec]

E
rr

or
: v

el
oc

ity
 v

x/
vy

 [m
/s

]

 

 
RMSE(Target)
Covariance

Figure 20: Estimation performance for bistatic geometry concerning receiver1; results for the clutter notch
model (left) is compared to the standard tracking result (right)

References

[1] P. Howland, D. Maksimiuk, and G. Reitsma, FM radio based bistatic radar, Radar, Sonar and Naviga-
tion, IEE Proceedings-, vol. 152, no. 3, pp. 107115, June 2005.

[2] M. Tobias and A. Lanterman, Probability hypothesis density-based multitarget tracking with bistatic
range and doppler observations, Radar, Sonar and Navigation, IEE Proceedings-, vol. 152, no. 3, pp.
195205, June 2005.

[3] U. Reimers, Digitale Fernsehtechnik. Springer, 1995.

[4] N. J. Willis, Bistatic Radar. SciTech Publishing, 2007.

[5] W. Koch, J. Koller, and M. Ulmke, Ground target tracking and road map extraction, ISPRS Journal of
Photogrammetry & Remote Sensing, vol. 61, p. 197 208, 2006.

[6] M. Daun and C. R. Berger, Track initiation in a multistatic DAB/DVB-T network, submitted for FU-
SION Conference, 2008.

[7] D. J. Torrieri, Statistical theory of passive location systems, IEEE Transactions on Aerospace and Elec-
tronic Systems, no. 2, pp. 183198, Mar. 1984.

[8] S. J. Julier and J. K. Uhlmann, ”Unscented Filtering and Nonlinear Estimation,” Proceeding of the
IEEE, vol. 92, no. 3, 2004.

[9] O. E. Drummond. Target Tracking with Retrodicted Discrete Probabilities. In SPIE 3163, Signal and
Data Processing of Small Targets, 249 (1997).

[10] O. E. Drummond. Multiple Sensor Tracking with Multiple Frame, Probabilistic Data Association. In
SPIE 2561, Signal and Data Processing of Small Targets, 322 (1995).

  

3 - 28 RTO-EN-SET-133 

 

 



0 100 200 300 400

500

1000

1500

2000

2500

3000

a. clutternotch modell

tracking time [sec]
E

rr
or

: p
os

iti
on

 x
/y

 [m
]

 

 
RMSE(Target)
Covariance

0 100 200 300 400

500

1000

1500

2000

2500

3000

b. no clutternotch modell

tracking time [sec]

E
rr

or
: p

os
iti

on
 x

/y
 [m

]

 

 
RMSE(Target)
Covariance

0 100 200 300 400 500
0

10

20

30

40
c. clutternotch modell

tracking time [sec]

E
rr

or
: v

el
oc

ity
 v

x/
vy

 [m
/s

]

 

 
RMSE(Target)
Covariance

0 100 200 300 400 500
0

10

20

30

40
d. no clutternotch modell

tracking time [sec]

E
rr

or
: v

el
oc

ity
 v

x/
vy

 [m
/s

]

 

 
RMSE(Target)
Covariance

Figure 21: Estimation performance for bistatic geometry concerning receiver2; results for the clutter notch
model (left) is compared to the standard tracking result (right)

[11] O. E. Drummond. Multiple Target Tracking with Multiple Frame, Probabilistic Data Association. In
SPIE 1954, Signal and Data Processing of Small Targets, 394 (1993).

[12] A. Gelb (Ed.). Applied Optimal Estimation, MIT Press (1974).

[13] Martin E. Liggins, David L. Hall, and James Llinas (Eds.). Handbook of Multisensor Data Fusion –
Theory and Practice. CRC Press, 2nd Edition (2008).

[14] D.M. Titterington, A.F.M. Smith, and U.E. Makov: Statistical Analysis of Finite Mixture Distributions,
John Wiley & Sons (1985).

[15] D. L. Alspach and H. W. Sorenson, “Nonlinear Bayesian estimation using gaussian sum approxima-
tion”. In IEEE Transactions on Automatic Control, Vol. 20, pp. 439447, 1972.

[16] M. Ulmke, O. Erdinc, and P. Willett. “Ground Moving Target Tracking with Cardinalized Gaussian
Mixture PHD Filtering”. In Proc. of the 10th International Conference on Information Fusion FUSION
2007, Quebec, Canada, July (2007).

[17] Christian R. Berger, Martina Daun, and Wolfgang Koch. “Low Complexity Track Initialization from
a Small Set of Non-Invertible Measurements”. In EURASIP Journal on Advances in Signal Pro-
cessing, special issue on track-before-detect techniques, Vol. 2008, Article ID 756414, 15 pages,
doi:10.1155/2008/756414 (2008).

[18] Ch. Berger, M. Daun, W. Koch. “Track Initialization from Incomplete Measurements”. In Proc. of 10th
ISIF International Conference on Information Fusion, Quebec, Canada, 2007.

[19] G. van Keuk. “Sequential Track Extraction”. In IEEE Transactions on Aerospace and Electronic Sys-
tems, Vol. 34, pp. 1135 (1998).

RTO-EN-SET-133 3 - 29 

 



0 100 200 300 400

200

400

600

800

1000

1200

1400

1600

a. clutternotch modell

tracking time [sec]
E

rr
or

: p
os

iti
on

 x
/y

 [m
]

 

 
RMSE(Target)
Covariance

0 100 200 300 400

200

400

600

800

1000

1200

1400

1600

b. no clutternotch modell

tracking time [sec]

E
rr

or
: p

os
iti

on
 x

/y
 [m

]

 

 
RMSE(Target)
Covariance

0 100 200 300 400 500
0

10

20

30

40
c. clutternotch modell

tracking time [sec]

E
rr

or
: v

el
oc

ity
 v

x/
vy

 [m
]

 

 
RMSE(Target)
Covariance

0 100 200 300 400 500
0

10

20

30

40
d. no clutternotch modell

tracking time [sec]

E
rr

or
: v

el
oc

ity
 v

x/
vy

 [m
]

 

 
RMSE(Target)
Covariance

Figure 22: Estimation performance for fusing information of two bistatic geometries; results for the clutter
notch model (left) is compared to the standard tracking result (right)

[20] Y. Boers and Hans Driessen. “A Particle Filter Multi Target Track Before Detect Application”. In IEE
Proceedings on Radar, Sonar, Navigation, vol. 151, no. 6, 2004.

[21] M. Wieneke, W. Koch. “On Sequential Track Extraction within the PMHT Framework”, In
EURASIP Journal on Advances in Signal Processing, Volume 2008, Article ID 276914, 13 pages,
doi:10.1155/2008/276914 (2008).

[22] W. Koch and R. Klemm, “Ground target tracking with STAP radar”, IEE Proc. Radar, Sonar and
Navigation, Vol. 148/3, June 2001, pp.173-185

[23] R. Klemm, U. Nickel and W. Koch, ”Single ground target tracking with adaptive monopulse radar. Pt.
I: The sensor”, EUSAR 2006, 16-18 May 2006, Dresden

[24] W. Koch, R. Klemm and U. NICKEL, ”Single ground target tracking with adaptive monopulse radar.
Pt. II: The tracker”, EUSAR 2006, 16-18 May 2006, Dresden

[25] R. Klemm, ”Principles of Space-Time Adaptive Processing”, 3rd ed. IET Publishers, 2006, London

[26] G. K. Borsari, ”Mitigating effects on STAP processing caused by an inclined array”, IEEE RADAR-
CON’98, 11-14 May 1998, Dallas, TX, pp. 135-140

[27] O. Kreyenkamp and R. Klemm, ”Doppler compensation in forward looking STAP radar”, IEE Proc.
Radar, Sonar and Navigation, 2001, pp. 253-258

[28] B. Himed, ”Effects of bistatic clutter dispersion on STAP systems”, IEE radar 2002, 15-17 October
2002, Edinburgh, Scotland, pp. 360-364

[29] F. D. Lapierre, J. G. Verly and M. van Droogenbroek, ”New solutions to the problem of range depen-
dence in bistatic STAP radars”, IEEE Radar Conference, May 5-8, 2003, Huntsville, AL, pp. 452-459

  

3 - 30 RTO-EN-SET-133 

 

 



[30] W. Koch, ”Ground Moving Target Tracking with STAP Radar”, Chapter 14 in: Klemm, R., ed.: Appli-
cations of space-time adaptive processing, IEE Publishers, 2004.

[31] M. Daun and W. Koch, ”Multistatic Target Tracking for Non-Cooperative Illuminating by DAB/DVB-
T”. submitted for IEEE Radar Conference, Rome, Italy, May 2008.

[32] W. Koch, ”’Negative’ Information in Tracking and Sensor Data Fusion: Discussion of Selected Exam-
ples”, Proc. FUSION 2004, pp. 91-98.

[33] Wolfram Research, Inc., ”Mathematica”, Version 5.2,Wolfram Research, Inc., Champaign, Illi-
nois,2005.

Advanced Target Tracking for Applications in Multistatic Systems 

RTO-EN-SET-133 3 - 31 

 

 



Advanced Target Tracking for Applications in Multistatic Systems 

3 - 32 RTO-EN-SET-133 

 

 

 


